METRIC AND TOPOLOGICAL SPACES: RE-EXAM 2022/23

A. V. KISELEV

Problem 1 (20%). The discrete metric d_0 on \mathbb{R} attains exactly two distinct values. Can a metric ρ on \mathbb{R} attain exactly three distinct values? (If not, prove; if yes, give example)

Problem 2 (20%). Let $(\mathfrak{X}, d_{\mathfrak{X}})$ be a metric space and $\emptyset \neq A \subseteq \mathfrak{X}$ its subset. Prove that the interior $Int(A) = \{a \in A \mid \exists \varepsilon(a) > 0, B_{\varepsilon}^{d_{\mathfrak{X}}}(a) \subseteq A\}$ is open in \mathfrak{X} .

Problem 3 (20%). Let \mathfrak{X} be a space and $\mathcal{Y} \subseteq \mathfrak{X}$. If \mathcal{Y} is connected and $\mathcal{Y} \subseteq \mathfrak{Z} \subseteq \overline{\mathcal{Y}}$, then \mathfrak{Z} is connected. (prove)

Problem 4 (20%). Prove that the diameter of every compact metric space $(\mathcal{X}, d_{\mathcal{X}})$ is finite.

(By definition, diam(\emptyset) = 0 and diam(S) = sup_{x,y\in S} d_X(x, y) for a non-empty bounded set $S \subseteq X$.)

Problem 5 (20%). Give an example of complete metric space $(\mathcal{X}, d_{\mathfrak{X}})$ and map $f: \mathcal{X} \to \mathcal{X}$ such that for all $x, y \in \mathcal{X}$ we have $d_{\mathfrak{X}}(f(x), f(y)) < d_{\mathfrak{X}}(x, y)$ but f is not a contraction.